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by G and its determinant by |G]. We assume that the degenerate system
(e = 0) has a solution which can be continued up to ¢ = 7 where 7 is such
that for the solution in question |G(x(r), u(r), 7, 0)| = 0. Part of our
sufficient condition for the perturbed system to have a solution is the re-
quirement that the characteristic equation

|g4i(x(7), u(r), 7, 0) — Noyy| = O
have N = 0 as a simple root.
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1.. An incompressible frictionless fluid of uniform density p fills the
whole space outside a moving solid and is at rest at infinite distance.
The motion of the solid is one of pure translation. The magnitude of the
velocity is U, its direction cosines with respect to a codrdinate system fixed
in the solid A\, u, ». The kinetic energy of the fluid is of the form

T = 1/2MU2_

The quantity M, called the virtual mass, depends on the direction of the
velocity:

M/p = AN 4+ Bu? + Cv® + 24w + 2B'»A + 2C .

4, B, C, A’, B’, C' are uniquely determined if th& shape and size of the solid
and the relative location of the codrdinate system and the solid are given.



Vo. 33, 1947 PHYSICS: G. POLYA 219

A closer study of the dependence of 4, B, C, A’, B’ and C’ on geometric
data may seem desirable.! Taking a first step in such a study, we consider
the average virtual mass M, obtained by averaging M over all directions A,
u, v and assuming p = 1:

M= A+B+ 0)/3.

M is independent of the location of the cosrdinate system and depends only
on the size and shape of the solid. It is easy to show that of all ellipsoids
with given volume the sphere has the minimum average virtual mass. . It would
be natural to suspect that this statement remains true if for “‘ellipsoids”
we substitute “‘solids.” At any rate, I shall prove the analogous general
theorem in two dimensions. '

2. We consider now the two-dimensional motion of an incompressible
frictionless fluid of uniform density p that fills the space around a cylinder
of infinite length. The motion is parallel to a plane, the plane of the com-
plex variable 2, that is perpendicular to the cylinder and intersects it in a
closed curve C (the notation of section 1 has been dropped). The exterior
of C is mapped conformally onto the exterior of the unit circle in the {-plane
so that the points at infinity correspond. Thus, z movmg outside C is
represented by the series

z—)\<§'+co+ +2+ ...... ) ; (1)
§ ¢
convergent for [¢| > 1. The number X is positive.

We begin with the case in which the motion of the fluid at infinite
distance is parallel to the real axis and has the velocity U (uniform flow
disturbed by a fixed cylindrical obstacle). The corresponding motion in
the ¢-plane, around a circular cylinder and with velocity U\ at infinity,

has the complex potential
' 1
x = s+ ) )

Yet (2) represents also the complex potential for the z-plane provided that
z and ¢ are linked by the mapping (1) that transforms streamlines into
streamlines and, especially, the unit circle of the {-plane into C.

3. To the motion just considered we add a uniform velocity U directed
along the negative real axis. We obtain thus a new motion (disturbance of
a fluid which is at rest at infinite distance by a cylinder moving through it
sidewise to the left). The complex potential of this motion is obviously

x=x - Uz=U[)\<§‘+%)— 2] @3)

where z and ¢ remain linked by (1). (Of course the coérdinate system re-
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mains fixed with respect to the solid.) The velocity at the point 2 is @,

conjugate to
X _ [ _ __>‘.i£ - :I
w = P U )\<1 =¥ 1 (4)

The kinetic energy of a layer of the fluid, of unit thickness and parallel to
the z = x + 7y plane, is

1 1
- 2 — 2 =
2pffl‘w| dx dy 5 MU (3)

The integral is extended over the exterior of C, and M is the virtual mass
per unit height. From (4) and (5) we obtain

o= f fh(i-2)E -
=ff3§“*(1“;2)\d”"’

the latter integral is extended over the exterior of the unit circle in the { =
£ + 4y plane. Introducing (1) and polar cobrdinates, we obtain from (6)
in the usual way that

dx dy (6)

M/p = m\(le = 1[* + 2|a* +

). (7N

Now the area of C or, what is numerically the same, the volume V of the
moving cylinder per unit height is

V=m\(1 — |a|t — 2a|? = 3a2 — ...). (8

This is well known and obtained by a computation analogous to the one
just sketched. It follows from (7) and (8) that

V+ M/p = 2001 = Rey). (9)

where ®c¢, denotes the real part of ¢;.

4. Now, we wish to obtain M,, the virtual mass per unit height
corresponding to a direction of the velocity that includes the angle a with
the direction just considered. We reduce this problem to the foregoing by
a rotation, introducing the new complex variables 2’ and {’,

=%, =%
We obtain from (1) that
21ia 3ia
z’=)\(§"+coe’“+%~+0;j2 + ... ) 1)
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Substituting ¢,¢*** for ¢, in (9), we obtain
V 4+ M,/p = 2001 — Reie™™®) -9
and hence
V4 Matep/p = 2001 + Rcye®®) - (10)
We define 1, the average virtual mass per unit height by
M = (/owp) J§" Mada = (2p) (Mo + Meoyrse). 11) .

(M has, in fact, the dimension of an area, and so has V.) From (9), (10)
and (11) we find finally )

V4 M = 2m\2 (12)

5. Now A\ is the so-called outer radius of C (that is the radius of the
circle onto the exterior of which the exterior of C is so mapped that the
points at infinity correspond to each other with unit magnification). It
follows from (8) (and is well known) that

V < o\
unless Cisa circle. Therefore, by (12),
T M>V
with the same proviso. For the circle, however, M = V. Thus, we have
proved that of all cylinders having the same area of the cross-section, the
circular cylinder has the minimum average virtual mass per unit height.

We can derive another result from (12): the average wirtual mass per
unit height decreases by symmetrization. Indeed, we know that symmetriza-
tion leaves V unchanged and decreases the outer radius A.2

1 This is suggested by a systematic study of the dependence of the capacity on geo-
metric data which has been undertaken recently by Mr. G. Szegé and the author.

? See G. Pélya and G. Szegd, “Inequalities for the Capacity of a Condenser,” Amer.
Jour. Math., 67, 1-32 (1945), especially pp. 13-14.



